Are we going to be able to see the leaderboard today (31st July?) I saw a new August 1st date in the site.
Hi @fredguth,
Since we had to change from arXiv articles to personally submitted articles we will now have to go through all manuscripts manually. We hope to achieve August 1st as publishing date, but due to a high participation rate chances are it may happen later.
We work hard on doing this as fast as possible.
Thanks for the info.Can you please share the link for the official leader board?
Leaderboards will be posted on our main challenge site at https://challenge2018.isic-archive.com/ . We’ll be sure to make a Forum and email announcement too.
HI, August 1st if the publishing date or delays are expected?
Thanks,
We’ll make the announcement on this forum and email when the final leaderboard goes up. Otherwise, we have no updates yet.
Hi, would you be able to disclose the approximate number of participants this year? I was just curious.
Mmmm … why is this taking so long?
Thanks,
We got about 300 submissions in total and a corresponding amount of manuscripts to screen.
That sounds like a lot of work, I had no idea there was such a large cohort of participants.
Hello all. Here it is: Leaderboard initial release
Hi folks, any idea when we will have the extended metrics publicized? Our group is particularly interested in the accuracies and AUCs for each lesion class — any chance those will be made public?
Any Update on Eduardo’s request? When are you planning to make the additional metrics available?
Hi all,
Unfortunately there still seem to be infrastructure issues delaying implementation of the secondary metrics on the official platform. As you are rightfully expecting them, please let me share preliminary secondary metrics of Task 3 within this (and the next because of character limits) post.
CAVE: These are not official numbers but ones I have calculated with another backend offline. While using standard implementations, I haven’t tested the results extensively (e.g. rounding), so I can’t guarantee no differences to the future official leaderboard metrics. I still hope they are useful for you.
Please note I am traveling the next hours (and days), so I will very probably not be able to answer any questions here.
Task 3 — Test-Set — Preliminary Secondary Metrics (1/2)
team_name | approach_name | MEL_Sens | MEL_Spec | MEL_PPV | MEL_NPV | MEL_AUC | BCC_Sens | BCC_Spec | BCC_PPV | BCC_NPV | BCC_AUC | AKIEC_Sens | AKIEC_Spec | AKIEC_PPV | AKIEC_NPV | AKIEC_AUC | NV_Sens | NV_Spec | NV_PPV | NV_NPV | NV_AUC | BKL_Sens | BKL_Spec | BKL_PPV | BKL_NPV | BKL_AUC | DF_Sens | DF_Spec | DF_PPV | DF_NPV | DF_AUC | VASC_Sens | VASC_Spec | VASC_PPV | VASC_NPV | VASC_AUC | avgAUC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MetaOptima Technology Inc. | Top 10 Models Averaged | 0.825 | 0.931 | 0.605 | 0.977 | 0.949 | 0.925 | 0.983 | 0.782 | 0.995 | 0.997 | 0.837 | 0.988 | 0.679 | 0.995 | 0.987 | 0.845 | 0.977 | 0.982 | 0.807 | 0.979 | 0.829 | 0.974 | 0.841 | 0.971 | 0.974 | 0.932 | 0.976 | 0.539 | 0.998 | 0.992 | 1.000 | 0.994 | 0.795 | 1.000 | 1.000 | 0.983 |
MetaOptima Technology Inc. | Meta Ensemble | 0.825 | 0.922 | 0.576 | 0.976 | 0.946 | 0.892 | 0.989 | 0.847 | 0.993 | 0.997 | 0.860 | 0.982 | 0.587 | 0.996 | 0.985 | 0.849 | 0.970 | 0.977 | 0.810 | 0.981 | 0.816 | 0.979 | 0.868 | 0.969 | 0.977 | 0.932 | 0.983 | 0.621 | 0.998 | 0.990 | 1.000 | 0.993 | 0.761 | 1.000 | 1.000 | 0.982 |
MetaOptima Technology Inc. | Best Single Model | 0.819 | 0.919 | 0.562 | 0.975 | 0.948 | 0.914 | 0.986 | 0.810 | 0.994 | 0.996 | 0.860 | 0.987 | 0.661 | 0.996 | 0.981 | 0.809 | 0.975 | 0.980 | 0.773 | 0.978 | 0.834 | 0.965 | 0.801 | 0.972 | 0.971 | 0.886 | 0.980 | 0.565 | 0.997 | 0.986 | 0.971 | 0.985 | 0.607 | 0.999 | 0.999 | 0.980 |
DAISYLab | Large Ensemble with heavy multi-cropping and loss weighting | 0.813 | 0.954 | 0.692 | 0.976 | 0.959 | 0.839 | 0.989 | 0.830 | 0.989 | 0.995 | 0.884 | 0.988 | 0.679 | 0.997 | 0.995 | 0.928 | 0.937 | 0.957 | 0.897 | 0.983 | 0.885 | 0.987 | 0.919 | 0.981 | 0.990 | 0.727 | 0.998 | 0.914 | 0.992 | 0.987 | 0.914 | 0.998 | 0.914 | 0.998 | 0.999 | 0.987 |
Medical Image Analysis Group, Sun Yat-sen University | Emsemble Of SENET and PNANET with DataAugmentation when TEST | 0.743 | 0.974 | 0.784 | 0.967 | 0.945 | 0.882 | 0.985 | 0.796 | 0.992 | 0.992 | 0.860 | 0.986 | 0.649 | 0.996 | 0.988 | 0.934 | 0.904 | 0.936 | 0.901 | 0.974 | 0.816 | 0.975 | 0.847 | 0.969 | 0.969 | 0.795 | 0.999 | 0.946 | 0.994 | 0.982 | 0.886 | 0.996 | 0.838 | 0.997 | 0.998 | 0.978 |
Medical Image Analysis Group, Sun Yat-sen University | Emsemble of SENET and PNASNET | 0.731 | 0.977 | 0.801 | 0.966 | 0.945 | 0.871 | 0.985 | 0.794 | 0.991 | 0.992 | 0.814 | 0.988 | 0.673 | 0.995 | 0.985 | 0.941 | 0.881 | 0.922 | 0.908 | 0.973 | 0.779 | 0.974 | 0.833 | 0.963 | 0.966 | 0.773 | 0.999 | 0.944 | 0.993 | 0.982 | 0.857 | 0.996 | 0.833 | 0.997 | 0.998 | 0.977 |
Li | densenet | 0.673 | 0.985 | 0.852 | 0.959 | 0.949 | 0.849 | 0.990 | 0.849 | 0.990 | 0.992 | 0.767 | 0.993 | 0.767 | 0.993 | 0.991 | 0.959 | 0.867 | 0.916 | 0.934 | 0.974 | 0.848 | 0.974 | 0.848 | 0.974 | 0.977 | 0.750 | 0.995 | 0.825 | 0.993 | 0.980 | 0.857 | 0.999 | 0.938 | 0.997 | 0.998 | 0.980 |
Ask Sina | Approach 3 : Average of Approach 1 and 2 | 0.830 | 0.880 | 0.469 | 0.976 | 0.883 | 0.828 | 0.980 | 0.733 | 0.989 | 0.977 | 0.767 | 0.993 | 0.750 | 0.993 | 0.979 | 0.786 | 0.957 | 0.965 | 0.748 | 0.969 | 0.811 | 0.953 | 0.743 | 0.968 | 0.937 | 0.773 | 0.991 | 0.723 | 0.993 | 0.976 | 0.886 | 0.997 | 0.886 | 0.997 | 0.998 | 0.960 |
RECOD Titans | Average of 15 Deep Learning Models Trained Only with Challenge Data | 0.608 | 0.961 | 0.667 | 0.951 | 0.934 | 0.849 | 0.982 | 0.760 | 0.990 | 0.991 | 0.860 | 0.979 | 0.544 | 0.996 | 0.983 | 0.911 | 0.884 | 0.922 | 0.868 | 0.965 | 0.770 | 0.965 | 0.788 | 0.962 | 0.958 | 0.795 | 0.995 | 0.814 | 0.994 | 0.987 | 0.829 | 0.999 | 0.935 | 0.996 | 0.997 | 0.974 |
Ask Sina | Approach 1 : 7 Classes Classifier | 0.789 | 0.904 | 0.513 | 0.971 | 0.923 | 0.806 | 0.973 | 0.664 | 0.987 | 0.979 | 0.791 | 0.988 | 0.667 | 0.994 | 0.980 | 0.839 | 0.945 | 0.958 | 0.796 | 0.967 | 0.760 | 0.968 | 0.797 | 0.960 | 0.950 | 0.773 | 0.992 | 0.739 | 0.993 | 0.985 | 0.857 | 0.996 | 0.833 | 0.997 | 0.999 | 0.969 |
Ask Sina | Approach 2 : 2 Steps Classifier (2C , 6C) | 0.836 | 0.832 | 0.389 | 0.976 | 0.782 | 0.828 | 0.982 | 0.748 | 0.989 | 0.974 | 0.767 | 0.991 | 0.717 | 0.993 | 0.976 | 0.673 | 0.968 | 0.970 | 0.663 | 0.960 | 0.834 | 0.921 | 0.640 | 0.971 | 0.916 | 0.773 | 0.991 | 0.723 | 0.993 | 0.958 | 0.829 | 0.997 | 0.853 | 0.996 | 0.996 | 0.938 |
NWPU-SAIIP | FV+Res101 | 0.661 | 0.965 | 0.706 | 0.957 | 0.813 | 0.828 | 0.984 | 0.778 | 0.989 | 0.906 | 0.744 | 0.988 | 0.640 | 0.992 | 0.866 | 0.925 | 0.879 | 0.920 | 0.886 | 0.902 | 0.774 | 0.961 | 0.771 | 0.962 | 0.868 | 0.795 | 0.996 | 0.854 | 0.994 | 0.896 | 0.771 | 0.998 | 0.900 | 0.995 | 0.885 | 0.876 |
Wonlab in Sungkyunkwan University, Korea, Republic of | WonDerM: Skin Lesion Classification with Fine-tuned Neural Networks | 0.620 | 0.968 | 0.711 | 0.952 | 0.939 | 0.860 | 0.985 | 0.792 | 0.991 | 0.991 | 0.628 | 0.988 | 0.614 | 0.989 | 0.982 | 0.926 | 0.877 | 0.919 | 0.888 | 0.966 | 0.797 | 0.971 | 0.824 | 0.966 | 0.964 | 0.750 | 0.984 | 0.589 | 0.992 | 0.983 | 0.914 | 0.997 | 0.889 | 0.998 | 0.997 | 0.974 |
vess | Resnext101 & DPN92, Snapshot ensamble, D4 TTA | 0.614 | 0.974 | 0.750 | 0.952 | 0.794 | 0.849 | 0.987 | 0.806 | 0.990 | 0.918 | 0.767 | 0.991 | 0.717 | 0.993 | 0.879 | 0.939 | 0.866 | 0.913 | 0.905 | 0.903 | 0.839 | 0.961 | 0.784 | 0.973 | 0.900 | 0.682 | 0.999 | 0.968 | 0.991 | 0.841 | 0.800 | 0.999 | 0.933 | 0.995 | 0.899 | 0.876 |
Medical Image Analysis Group, Sun Yat-sen University | Emsemble Of ResNet-152 | 0.772 | 0.905 | 0.510 | 0.969 | 0.940 | 0.871 | 0.981 | 0.750 | 0.991 | 0.991 | 0.581 | 0.991 | 0.658 | 0.988 | 0.977 | 0.844 | 0.934 | 0.950 | 0.799 | 0.966 | 0.793 | 0.955 | 0.748 | 0.965 | 0.958 | 0.727 | 0.998 | 0.914 | 0.992 | 0.987 | 0.886 | 0.997 | 0.886 | 0.997 | 0.996 | 0.974 |
LMU DataMining | thresholding DF AKIEC MEL VASC BKL | 0.754 | 0.878 | 0.440 | 0.966 | 0.923 | 0.785 | 0.983 | 0.753 | 0.986 | 0.983 | 0.651 | 0.988 | 0.622 | 0.990 | 0.960 | 0.776 | 0.954 | 0.962 | 0.739 | 0.966 | 0.760 | 0.950 | 0.717 | 0.959 | 0.943 | 0.818 | 0.978 | 0.529 | 0.994 | 0.966 | 0.914 | 0.991 | 0.711 | 0.998 | 0.994 | 0.962 |
NWPU-SAIIP | FV+Res50 fine-tuning | 0.667 | 0.967 | 0.722 | 0.958 | 0.817 | 0.796 | 0.991 | 0.851 | 0.987 | 0.893 | 0.744 | 0.982 | 0.552 | 0.992 | 0.863 | 0.927 | 0.876 | 0.918 | 0.889 | 0.901 | 0.793 | 0.961 | 0.775 | 0.965 | 0.877 | 0.750 | 0.996 | 0.846 | 0.993 | 0.873 | 0.771 | 0.998 | 0.900 | 0.995 | 0.885 | 0.873 |
LMU DataMining | thresholding DF AKIEC | 0.690 | 0.922 | 0.529 | 0.959 | 0.928 | 0.796 | 0.983 | 0.755 | 0.987 | 0.984 | 0.651 | 0.988 | 0.622 | 0.990 | 0.963 | 0.849 | 0.929 | 0.947 | 0.803 | 0.968 | 0.779 | 0.958 | 0.758 | 0.963 | 0.945 | 0.818 | 0.978 | 0.529 | 0.994 | 0.965 | 0.857 | 0.993 | 0.750 | 0.997 | 0.994 | 0.964 |
University of Washington | Densenet201 | 0.632 | 0.936 | 0.557 | 0.952 | 0.881 | 0.785 | 0.982 | 0.745 | 0.986 | 0.981 | 0.744 | 0.985 | 0.593 | 0.992 | 0.981 | 0.855 | 0.905 | 0.932 | 0.805 | 0.951 | 0.756 | 0.939 | 0.675 | 0.958 | 0.923 | 0.750 | 0.990 | 0.702 | 0.992 | 0.941 | 0.857 | 0.992 | 0.714 | 0.997 | 0.986 | 0.949 |
LMU DataMining | No thresholding | 0.696 | 0.922 | 0.531 | 0.960 | 0.931 | 0.796 | 0.982 | 0.747 | 0.987 | 0.984 | 0.558 | 0.992 | 0.667 | 0.987 | 0.963 | 0.874 | 0.925 | 0.946 | 0.830 | 0.970 | 0.788 | 0.953 | 0.737 | 0.964 | 0.945 | 0.795 | 0.996 | 0.854 | 0.994 | 0.967 | 0.857 | 0.993 | 0.750 | 0.997 | 0.994 | 0.965 |
Holidayburned | Ensemble_of_resnet_and_inception_iteration_20000 | 0.830 | 0.856 | 0.424 | 0.975 | 0.926 | 0.839 | 0.980 | 0.736 | 0.989 | 0.991 | 0.512 | 0.993 | 0.687 | 0.986 | 0.984 | 0.762 | 0.960 | 0.966 | 0.728 | 0.951 | 0.793 | 0.943 | 0.699 | 0.964 | 0.956 | 0.773 | 0.996 | 0.850 | 0.993 | 0.986 | 0.771 | 0.994 | 0.750 | 0.995 | 0.997 | 0.970 |
DeepOncology.AI | DeepOncology.AI-real_test_0.915_ensemble | 0.591 | 0.974 | 0.743 | 0.949 | 0.882 | 0.839 | 0.988 | 0.821 | 0.989 | 0.990 | 0.698 | 0.992 | 0.714 | 0.991 | 0.975 | 0.967 | 0.818 | 0.889 | 0.943 | 0.965 | 0.751 | 0.981 | 0.867 | 0.959 | 0.945 | 0.682 | 0.999 | 0.937 | 0.991 | 0.955 | 0.743 | 0.997 | 0.867 | 0.994 | 0.996 | 0.958 |
University of Minnesota Center for Distributed Robotics | An ensemble of resnet, densenet, inception, xception, and inceptionresnet | 0.702 | 0.934 | 0.577 | 0.961 | 0.929 | 0.839 | 0.982 | 0.757 | 0.989 | 0.991 | 0.674 | 0.991 | 0.690 | 0.990 | 0.973 | 0.926 | 0.900 | 0.933 | 0.890 | 0.974 | 0.774 | 0.976 | 0.844 | 0.963 | 0.965 | 0.636 | 0.998 | 0.903 | 0.989 | 0.983 | 0.714 | 0.999 | 0.926 | 0.993 | 0.998 | 0.973 |
NWPU-SAIIP | finetuning res101 | 0.667 | 0.901 | 0.462 | 0.955 | 0.784 | 0.753 | 0.972 | 0.642 | 0.984 | 0.863 | 0.814 | 0.953 | 0.337 | 0.994 | 0.883 | 0.774 | 0.934 | 0.946 | 0.733 | 0.854 | 0.664 | 0.943 | 0.661 | 0.944 | 0.803 | 0.795 | 0.990 | 0.700 | 0.994 | 0.893 | 0.771 | 0.991 | 0.675 | 0.995 | 0.881 | 0.852 |
Li | Exp 5 | 0.673 | 0.963 | 0.701 | 0.958 | 0.945 | 0.785 | 0.981 | 0.730 | 0.986 | 0.987 | 0.628 | 0.987 | 0.587 | 0.989 | 0.978 | 0.956 | 0.852 | 0.907 | 0.928 | 0.970 | 0.724 | 0.983 | 0.877 | 0.955 | 0.960 | 0.727 | 0.997 | 0.889 | 0.992 | 0.982 | 0.743 | 0.998 | 0.897 | 0.994 | 0.999 | 0.974 |
Holidayburned | Ensemble_of_resnet_and_Inception | 0.825 | 0.861 | 0.431 | 0.975 | 0.922 | 0.817 | 0.982 | 0.745 | 0.988 | 0.987 | 0.558 | 0.991 | 0.649 | 0.987 | 0.978 | 0.772 | 0.940 | 0.951 | 0.733 | 0.953 | 0.793 | 0.947 | 0.717 | 0.965 | 0.949 | 0.682 | 0.998 | 0.909 | 0.991 | 0.988 | 0.771 | 0.995 | 0.771 | 0.995 | 0.997 | 0.968 |
Li | 1-resins | 0.690 | 0.963 | 0.707 | 0.961 | 0.935 | 0.796 | 0.979 | 0.712 | 0.986 | 0.980 | 0.581 | 0.992 | 0.676 | 0.988 | 0.958 | 0.958 | 0.834 | 0.897 | 0.930 | 0.969 | 0.719 | 0.985 | 0.891 | 0.954 | 0.947 | 0.705 | 1.000 | 1.000 | 0.991 | 0.973 | 0.714 | 0.999 | 0.926 | 0.993 | 0.983 | 0.964 |
BIL, NTU | Conv. Ensemble (Inception Models Normalized+Un-Norm) + avg. pooling | 0.614 | 0.971 | 0.729 | 0.952 | 0.934 | 0.753 | 0.994 | 0.886 | 0.984 | 0.988 | 0.698 | 0.995 | 0.811 | 0.991 | 0.988 | 0.969 | 0.818 | 0.889 | 0.946 | 0.974 | 0.765 | 0.971 | 0.814 | 0.961 | 0.973 | 0.614 | 0.999 | 0.964 | 0.989 | 0.966 | 0.743 | 0.998 | 0.897 | 0.994 | 0.984 | 0.972 |
Tufts University School of Medicine | Convnet ResNet50 with cyclical learning rates V2 | 0.573 | 0.968 | 0.695 | 0.947 | 0.932 | 0.817 | 0.984 | 0.768 | 0.988 | 0.988 | 0.605 | 0.991 | 0.667 | 0.988 | 0.976 | 0.946 | 0.829 | 0.893 | 0.911 | 0.964 | 0.737 | 0.968 | 0.792 | 0.956 | 0.953 | 0.750 | 0.995 | 0.805 | 0.993 | 0.988 | 0.714 | 0.999 | 0.926 | 0.993 | 0.998 | 0.971 |
Le-Health | Classification Using the Cascade Structure | 0.602 | 0.951 | 0.609 | 0.949 | 0.913 | 0.817 | 0.980 | 0.724 | 0.988 | 0.978 | 0.791 | 0.980 | 0.540 | 0.994 | 0.978 | 0.901 | 0.856 | 0.904 | 0.851 | 0.957 | 0.737 | 0.956 | 0.737 | 0.956 | 0.948 | 0.545 | 1.000 | 1.000 | 0.987 | 0.949 | 0.743 | 0.999 | 0.929 | 0.994 | 0.984 | 0.958 |
BIL, NTU | Conv. Ensemble (Inception Models) + avg. pooling | 0.673 | 0.966 | 0.714 | 0.959 | 0.931 | 0.753 | 0.992 | 0.854 | 0.984 | 0.987 | 0.674 | 0.995 | 0.806 | 0.991 | 0.987 | 0.970 | 0.826 | 0.894 | 0.949 | 0.973 | 0.751 | 0.978 | 0.849 | 0.959 | 0.972 | 0.591 | 0.999 | 0.963 | 0.988 | 0.971 | 0.714 | 0.999 | 0.926 | 0.993 | 0.974 | 0.971 |
RECOD Titans | XGB Ensemble of 43 Deep Learning Models | 0.620 | 0.940 | 0.570 | 0.951 | 0.904 | 0.763 | 0.994 | 0.899 | 0.985 | 0.967 | 0.558 | 0.990 | 0.632 | 0.987 | 0.961 | 0.936 | 0.814 | 0.884 | 0.894 | 0.962 | 0.682 | 0.977 | 0.831 | 0.948 | 0.944 | 0.705 | 0.997 | 0.861 | 0.991 | 0.941 | 0.857 | 0.999 | 0.938 | 0.997 | 0.986 | 0.952 |
DeepOncology.AI | DeepOncology.AI-real_test_0.877_resnet152_finetune_90.2458_0.347_66_2018-07-13_1 | 0.620 | 0.963 | 0.679 | 0.952 | 0.794 | 0.860 | 0.980 | 0.741 | 0.991 | 0.983 | 0.512 | 0.994 | 0.710 | 0.986 | 0.948 | 0.906 | 0.862 | 0.908 | 0.860 | 0.949 | 0.742 | 0.947 | 0.703 | 0.956 | 0.867 | 0.705 | 0.990 | 0.689 | 0.991 | 0.959 | 0.771 | 0.994 | 0.750 | 0.995 | 0.987 | 0.927 |
350818 | multidimensional ensembling | 0.702 | 0.944 | 0.615 | 0.961 | 0.943 | 0.656 | 0.991 | 0.824 | 0.978 | 0.985 | 0.465 | 0.999 | 0.952 | 0.985 | 0.983 | 0.936 | 0.886 | 0.925 | 0.902 | 0.974 | 0.816 | 0.952 | 0.741 | 0.969 | 0.955 | 0.636 | 0.999 | 0.966 | 0.989 | 0.989 | 0.886 | 0.998 | 0.912 | 0.997 | 0.999 | 0.975 |
Nile University - MIIP | Ensembles of ResNet50, ResNet34, InceptionV3 | 0.667 | 0.952 | 0.640 | 0.957 | 0.809 | 0.796 | 0.985 | 0.779 | 0.987 | 0.890 | 0.698 | 0.988 | 0.625 | 0.991 | 0.843 | 0.947 | 0.842 | 0.901 | 0.914 | 0.895 | 0.691 | 0.976 | 0.829 | 0.950 | 0.834 | 0.523 | 0.999 | 0.920 | 0.986 | 0.761 | 0.771 | 0.999 | 0.931 | 0.995 | 0.885 | 0.845 |
QuindiTech: Xuan Li, Peng Xu | Inception Ensemble | 0.596 | 0.972 | 0.734 | 0.950 | 0.784 | 0.763 | 0.985 | 0.772 | 0.984 | 0.874 | 0.605 | 0.995 | 0.788 | 0.988 | 0.800 | 0.970 | 0.804 | 0.882 | 0.947 | 0.887 | 0.733 | 0.976 | 0.837 | 0.956 | 0.854 | 0.705 | 1.000 | 1.000 | 0.991 | 0.852 | 0.714 | 0.999 | 0.926 | 0.993 | 0.856 | 0.844 |
Tufts University School of Medicine | Convnet ResNet50 with cyclical learning rates V1 | 0.632 | 0.962 | 0.679 | 0.953 | 0.940 | 0.785 | 0.984 | 0.760 | 0.986 | 0.984 | 0.605 | 0.995 | 0.765 | 0.988 | 0.973 | 0.943 | 0.824 | 0.890 | 0.905 | 0.967 | 0.742 | 0.970 | 0.805 | 0.957 | 0.958 | 0.773 | 0.998 | 0.919 | 0.993 | 0.985 | 0.600 | 0.999 | 0.913 | 0.991 | 0.998 | 0.972 |
Tandon Titans | ResNet-50-Post-Processing | 0.719 | 0.917 | 0.526 | 0.962 | 0.914 | 0.742 | 0.986 | 0.775 | 0.983 | 0.982 | 0.651 | 0.988 | 0.622 | 0.990 | 0.962 | 0.889 | 0.892 | 0.925 | 0.842 | 0.957 | 0.724 | 0.956 | 0.734 | 0.954 | 0.933 | 0.636 | 0.999 | 0.933 | 0.989 | 0.989 | 0.714 | 0.999 | 0.926 | 0.993 | 0.986 | 0.960 |
RECOD Titans | Average of 8 Deep Learning Models Augmented with Synthetic Images | 0.550 | 0.961 | 0.644 | 0.944 | 0.929 | 0.774 | 0.995 | 0.911 | 0.985 | 0.993 | 0.628 | 0.992 | 0.692 | 0.989 | 0.978 | 0.967 | 0.769 | 0.863 | 0.939 | 0.968 | 0.631 | 0.982 | 0.856 | 0.941 | 0.955 | 0.750 | 0.995 | 0.825 | 0.993 | 0.984 | 0.771 | 0.998 | 0.900 | 0.995 | 0.995 | 0.972 |
Texas A&M Aggies | Sequential PNASNet Classification based on Balanced Color-Normed Dataset | 0.655 | 0.943 | 0.596 | 0.955 | 0.799 | 0.817 | 0.976 | 0.691 | 0.988 | 0.897 | 0.605 | 0.989 | 0.619 | 0.988 | 0.797 | 0.906 | 0.846 | 0.898 | 0.857 | 0.876 | 0.618 | 0.968 | 0.766 | 0.938 | 0.793 | 0.727 | 0.988 | 0.653 | 0.992 | 0.858 | 0.743 | 0.997 | 0.839 | 0.994 | 0.870 | 0.841 |
Hangzhou Dianzi University CAD429 | CNN; ensemble learning; multi-features. | 0.684 | 0.968 | 0.731 | 0.960 | 0.826 | 0.763 | 0.991 | 0.845 | 0.985 | 0.877 | 0.465 | 0.993 | 0.645 | 0.984 | 0.729 | 0.956 | 0.844 | 0.902 | 0.927 | 0.900 | 0.825 | 0.970 | 0.821 | 0.971 | 0.897 | 0.614 | 0.999 | 0.964 | 0.989 | 0.806 | 0.743 | 0.999 | 0.929 | 0.994 | 0.871 | 0.844 |
University of Washington | Densenet169_nesterov | 0.608 | 0.957 | 0.642 | 0.950 | 0.888 | 0.731 | 0.982 | 0.731 | 0.982 | 0.960 | 0.535 | 0.988 | 0.575 | 0.986 | 0.965 | 0.913 | 0.842 | 0.897 | 0.865 | 0.935 | 0.677 | 0.962 | 0.750 | 0.947 | 0.922 | 0.727 | 0.984 | 0.582 | 0.992 | 0.908 | 0.857 | 0.993 | 0.732 | 0.997 | 0.976 | 0.936 |
QuindiTech: Xuan Li, Peng Xu | Resnet152 Ensemble with Other Models | 0.596 | 0.971 | 0.723 | 0.950 | 0.784 | 0.763 | 0.985 | 0.772 | 0.984 | 0.874 | 0.605 | 0.994 | 0.743 | 0.988 | 0.799 | 0.968 | 0.799 | 0.879 | 0.943 | 0.884 | 0.724 | 0.978 | 0.844 | 0.955 | 0.851 | 0.705 | 1.000 | 1.000 | 0.991 | 0.852 | 0.686 | 0.999 | 0.923 | 0.993 | 0.842 | 0.841 |
2nd Appinion | Wide residual network applied to 7-class skin lesion classification | 0.749 | 0.925 | 0.559 | 0.966 | 0.939 | 0.828 | 0.986 | 0.794 | 0.989 | 0.991 | 0.628 | 0.993 | 0.711 | 0.989 | 0.974 | 0.877 | 0.877 | 0.915 | 0.825 | 0.960 | 0.802 | 0.959 | 0.767 | 0.967 | 0.960 | 0.477 | 0.998 | 0.875 | 0.985 | 0.940 | 0.686 | 0.999 | 0.923 | 0.993 | 0.982 | 0.964 |
Hdu CAD429 | Ensemble with many Multi Scale Convolutional Neural Network | 0.678 | 0.970 | 0.744 | 0.959 | 0.824 | 0.774 | 0.991 | 0.847 | 0.985 | 0.883 | 0.465 | 0.993 | 0.645 | 0.984 | 0.729 | 0.956 | 0.839 | 0.899 | 0.927 | 0.898 | 0.820 | 0.968 | 0.813 | 0.970 | 0.894 | 0.591 | 0.999 | 0.963 | 0.988 | 0.795 | 0.743 | 0.999 | 0.929 | 0.994 | 0.871 | 0.842 |
University of Washington | Densenet161 | 0.731 | 0.922 | 0.543 | 0.964 | 0.880 | 0.731 | 0.982 | 0.723 | 0.982 | 0.965 | 0.581 | 0.983 | 0.500 | 0.988 | 0.972 | 0.824 | 0.925 | 0.943 | 0.777 | 0.943 | 0.793 | 0.923 | 0.635 | 0.964 | 0.917 | 0.591 | 0.990 | 0.650 | 0.988 | 0.884 | 0.771 | 0.996 | 0.818 | 0.995 | 0.966 | 0.932 |
Tandon Titans | ResNet50-with-hair-removal | 0.754 | 0.837 | 0.372 | 0.964 | 0.879 | 0.731 | 0.984 | 0.747 | 0.982 | 0.978 | 0.605 | 0.984 | 0.531 | 0.988 | 0.957 | 0.743 | 0.947 | 0.955 | 0.710 | 0.941 | 0.724 | 0.927 | 0.623 | 0.952 | 0.911 | 0.636 | 0.997 | 0.875 | 0.989 | 0.989 | 0.829 | 0.997 | 0.879 | 0.996 | 0.985 | 0.948 |
Dysion AI Technology Co., Ltd | Deep Model Ensemble with Data Alignment v1 | 0.544 | 0.944 | 0.554 | 0.942 | 0.905 | 0.839 | 0.966 | 0.619 | 0.989 | 0.982 | 0.674 | 0.984 | 0.558 | 0.990 | 0.977 | 0.905 | 0.847 | 0.899 | 0.856 | 0.956 | 0.668 | 0.971 | 0.792 | 0.946 | 0.941 | 0.636 | 0.994 | 0.757 | 0.989 | 0.968 | 0.743 | 0.997 | 0.839 | 0.994 | 0.993 | 0.960 |
AI Toulouse | Using Znet and bagging from two first approachs | 0.673 | 0.919 | 0.513 | 0.956 | 0.852 | 0.871 | 0.971 | 0.664 | 0.991 | 0.950 | 0.535 | 0.982 | 0.469 | 0.986 | 0.845 | 0.850 | 0.897 | 0.926 | 0.799 | 0.914 | 0.691 | 0.951 | 0.701 | 0.948 | 0.890 | 0.727 | 0.997 | 0.889 | 0.992 | 0.896 | 0.657 | 0.994 | 0.719 | 0.992 | 0.869 | 0.888 |
QuindiTech: Xuan Li, Peng Xu | vgg ensemble | 0.591 | 0.972 | 0.727 | 0.949 | 0.781 | 0.731 | 0.987 | 0.791 | 0.982 | 0.859 | 0.628 | 0.993 | 0.711 | 0.989 | 0.810 | 0.967 | 0.793 | 0.875 | 0.941 | 0.880 | 0.747 | 0.978 | 0.848 | 0.958 | 0.862 | 0.659 | 1.000 | 1.000 | 0.990 | 0.830 | 0.657 | 0.999 | 0.920 | 0.992 | 0.828 | 0.836 |
Dysion AI Technology Co., Ltd | Deep Model Ensemble with Data Alignment v2 | 0.444 | 0.960 | 0.585 | 0.931 | 0.893 | 0.839 | 0.956 | 0.553 | 0.989 | 0.985 | 0.721 | 0.984 | 0.564 | 0.992 | 0.979 | 0.915 | 0.834 | 0.893 | 0.867 | 0.953 | 0.645 | 0.967 | 0.765 | 0.942 | 0.930 | 0.636 | 0.992 | 0.700 | 0.989 | 0.967 | 0.771 | 0.997 | 0.871 | 0.995 | 0.995 | 0.958 |
DeepOncology.AI | DeepOncology.AI-real_test_0.849_resnet101_finetune_92.3418_0.2891_111_2018-07-15 | 0.602 | 0.943 | 0.575 | 0.949 | 0.848 | 0.806 | 0.984 | 0.773 | 0.987 | 0.978 | 0.628 | 0.990 | 0.643 | 0.989 | 0.969 | 0.931 | 0.819 | 0.886 | 0.887 | 0.944 | 0.696 | 0.974 | 0.816 | 0.950 | 0.908 | 0.614 | 0.999 | 0.964 | 0.989 | 0.934 | 0.686 | 0.999 | 0.923 | 0.993 | 0.969 | 0.936 |
Department of Dermatology, University of Rzeszów, Poland | ResNet101-SGD | 0.585 | 0.948 | 0.588 | 0.947 | 0.887 | 0.753 | 0.972 | 0.636 | 0.984 | 0.966 | 0.605 | 0.984 | 0.520 | 0.988 | 0.952 | 0.894 | 0.859 | 0.905 | 0.844 | 0.950 | 0.710 | 0.953 | 0.716 | 0.951 | 0.927 | 0.614 | 0.997 | 0.844 | 0.989 | 0.958 | 0.800 | 0.994 | 0.757 | 0.995 | 0.988 | 0.947 |
QuindiTech: Yuchen Lu | ls + resnet + ens | 0.632 | 0.966 | 0.706 | 0.954 | 0.901 | 0.753 | 0.985 | 0.769 | 0.984 | 0.983 | 0.651 | 0.989 | 0.636 | 0.990 | 0.943 | 0.949 | 0.808 | 0.881 | 0.914 | 0.946 | 0.710 | 0.971 | 0.806 | 0.952 | 0.941 | 0.659 | 0.999 | 0.935 | 0.990 | 0.942 | 0.600 | 0.999 | 0.913 | 0.991 | 0.986 | 0.949 |
BioImaging-KHU | Deep Learning with Adapted InceptionResNetV2 | 0.649 | 0.937 | 0.566 | 0.954 | 0.912 | 0.774 | 0.984 | 0.758 | 0.985 | 0.982 | 0.674 | 0.977 | 0.460 | 0.990 | 0.937 | 0.876 | 0.876 | 0.914 | 0.824 | 0.952 | 0.691 | 0.940 | 0.661 | 0.948 | 0.929 | 0.614 | 0.995 | 0.794 | 0.988 | 0.977 | 0.657 | 0.998 | 0.885 | 0.992 | 0.980 | 0.953 |
Dominiks AI team | Above dermatologist-level classification of malignant melanomas with deep neural | 0.877 | 0.606 | 0.221 | 0.975 | 0.671 | 0.774 | 0.984 | 0.758 | 0.985 | 0.919 | 0.674 | 0.983 | 0.537 | 0.990 | 0.868 | 0.524 | 0.980 | 0.975 | 0.578 | 0.658 | 0.470 | 0.987 | 0.857 | 0.917 | 0.675 | 0.773 | 0.997 | 0.895 | 0.993 | 0.909 | 0.829 | 0.993 | 0.744 | 0.996 | 0.971 | 0.810 |
Mammoth | Old fashion | 0.673 | 0.934 | 0.567 | 0.957 | 0.893 | 0.688 | 0.967 | 0.577 | 0.979 | 0.967 | 0.628 | 0.988 | 0.600 | 0.989 | 0.973 | 0.862 | 0.900 | 0.929 | 0.813 | 0.946 | 0.700 | 0.932 | 0.633 | 0.949 | 0.908 | 0.682 | 0.993 | 0.732 | 0.990 | 0.977 | 0.686 | 0.997 | 0.857 | 0.993 | 0.981 | 0.949 |
AI Toulouse | ZNet classification with additional data | 0.608 | 0.931 | 0.528 | 0.949 | 0.853 | 0.871 | 0.975 | 0.692 | 0.991 | 0.957 | 0.512 | 0.986 | 0.524 | 0.986 | 0.847 | 0.881 | 0.864 | 0.907 | 0.828 | 0.922 | 0.673 | 0.952 | 0.702 | 0.946 | 0.892 | 0.750 | 0.998 | 0.917 | 0.993 | 0.896 | 0.629 | 0.995 | 0.759 | 0.991 | 0.869 | 0.891 |
Redha Ali, Russell C. Hardie, Manawaduge Supun De Silva, and Temesguen Messay Ke | Combining Deep and Handcrafted Image Features for Skin Cancer Classification | 0.626 | 0.935 | 0.552 | 0.951 | 0.780 | 0.817 | 0.955 | 0.543 | 0.988 | 0.886 | 0.744 | 0.971 | 0.432 | 0.992 | 0.858 | 0.791 | 0.949 | 0.959 | 0.751 | 0.870 | 0.793 | 0.907 | 0.589 | 0.963 | 0.850 | 0.682 | 0.993 | 0.750 | 0.990 | 0.838 | 0.457 | 0.996 | 0.727 | 0.987 | 0.727 | 0.830 |
CNR-ISASI_Lecce | Deep Convolutional Neural Network with Stochastic Gradient Descent Optimization | 0.620 | 0.949 | 0.606 | 0.951 | 0.908 | 0.742 | 0.987 | 0.784 | 0.983 | 0.978 | 0.651 | 0.990 | 0.667 | 0.990 | 0.976 | 0.911 | 0.833 | 0.891 | 0.861 | 0.954 | 0.751 | 0.954 | 0.734 | 0.958 | 0.957 | 0.591 | 0.996 | 0.812 | 0.988 | 0.979 | 0.629 | 0.999 | 0.917 | 0.991 | 0.992 | 0.963 |
BioImaging-KHU | Deep Learning with Adapted ResNet-50 | 0.696 | 0.916 | 0.515 | 0.959 | 0.916 | 0.742 | 0.971 | 0.627 | 0.983 | 0.969 | 0.488 | 0.992 | 0.636 | 0.985 | 0.944 | 0.877 | 0.871 | 0.911 | 0.824 | 0.936 | 0.691 | 0.960 | 0.743 | 0.949 | 0.925 | 0.705 | 0.998 | 0.912 | 0.991 | 0.966 | 0.686 | 0.998 | 0.889 | 0.993 | 0.982 | 0.949 |
Hosei University, Iyatomi lab | SEResNet101 w/ mean_teacher + SEResNet152 w/o mean_teacher | 0.696 | 0.959 | 0.684 | 0.961 | 0.943 | 0.699 | 0.987 | 0.783 | 0.980 | 0.979 | 0.674 | 0.991 | 0.690 | 0.990 | 0.977 | 0.956 | 0.791 | 0.873 | 0.923 | 0.960 | 0.700 | 0.985 | 0.889 | 0.951 | 0.955 | 0.455 | 1.000 | 1.000 | 0.984 | 0.978 | 0.686 | 0.998 | 0.889 | 0.993 | 0.996 | 0.970 |
Manu Goyal | DeeplabV3+ with Priority strategy based on benign/maligant and number of imag | 0.585 | 0.928 | 0.510 | 0.946 | 0.757 | 0.785 | 0.983 | 0.753 | 0.986 | 0.884 | 0.488 | 0.980 | 0.420 | 0.985 | 0.734 | 0.867 | 0.862 | 0.905 | 0.811 | 0.865 | 0.525 | 0.983 | 0.838 | 0.925 | 0.754 | 0.841 | 0.970 | 0.457 | 0.995 | 0.905 | 0.771 | 0.963 | 0.333 | 0.994 | 0.867 | 0.824 |
QuindiTech: Yuchen Lu | resnet all data | 0.655 | 0.963 | 0.696 | 0.956 | 0.912 | 0.774 | 0.979 | 0.706 | 0.985 | 0.971 | 0.674 | 0.984 | 0.558 | 0.990 | 0.957 | 0.942 | 0.831 | 0.893 | 0.904 | 0.943 | 0.714 | 0.971 | 0.803 | 0.953 | 0.924 | 0.523 | 0.999 | 0.920 | 0.986 | 0.962 | 0.571 | 0.999 | 0.952 | 0.990 | 0.989 | 0.951 |
PA_Tech | deep convolutional neural network with transfer learning | 0.637 | 0.954 | 0.637 | 0.954 | 0.924 | 0.753 | 0.984 | 0.753 | 0.984 | 0.983 | 0.581 | 0.985 | 0.532 | 0.988 | 0.963 | 0.921 | 0.841 | 0.897 | 0.876 | 0.952 | 0.687 | 0.957 | 0.730 | 0.948 | 0.933 | 0.636 | 0.994 | 0.757 | 0.989 | 0.976 | 0.629 | 0.997 | 0.815 | 0.991 | 0.995 | 0.961 |
Hosei University, Iyatomi lab | SEResNet152 w/ mean_teacher + SEResNet152 w/o mean_teacher (10fold ensemble) | 0.667 | 0.960 | 0.683 | 0.958 | 0.945 | 0.742 | 0.987 | 0.784 | 0.983 | 0.977 | 0.605 | 0.993 | 0.703 | 0.988 | 0.969 | 0.959 | 0.776 | 0.866 | 0.927 | 0.963 | 0.668 | 0.986 | 0.890 | 0.947 | 0.959 | 0.455 | 0.999 | 0.909 | 0.984 | 0.987 | 0.743 | 0.999 | 0.929 | 0.994 | 0.996 | 0.971 |
Hosei University, Iyatomi lab | SEResNet101 w/ mean_teacher + SEResNet152 w/o mean_teacher + 10fold SEResNets | 0.661 | 0.962 | 0.689 | 0.957 | 0.946 | 0.720 | 0.985 | 0.761 | 0.982 | 0.979 | 0.674 | 0.993 | 0.725 | 0.990 | 0.976 | 0.959 | 0.776 | 0.866 | 0.927 | 0.963 | 0.687 | 0.987 | 0.898 | 0.949 | 0.959 | 0.477 | 1.000 | 1.000 | 0.985 | 0.985 | 0.657 | 0.998 | 0.885 | 0.992 | 0.996 | 0.972 |
Opsins | Transfer learning based CNN | 0.573 | 0.963 | 0.662 | 0.946 | 0.930 | 0.667 | 0.992 | 0.838 | 0.978 | 0.983 | 0.628 | 0.992 | 0.692 | 0.989 | 0.958 | 0.946 | 0.811 | 0.883 | 0.909 | 0.964 | 0.751 | 0.958 | 0.751 | 0.958 | 0.943 | 0.727 | 0.995 | 0.821 | 0.992 | 0.960 | 0.543 | 0.999 | 0.905 | 0.989 | 0.968 | 0.958 |
Mammoth | Luan Dun | 0.696 | 0.934 | 0.572 | 0.960 | 0.912 | 0.699 | 0.971 | 0.613 | 0.980 | 0.967 | 0.721 | 0.984 | 0.564 | 0.992 | 0.960 | 0.876 | 0.896 | 0.927 | 0.827 | 0.949 | 0.687 | 0.940 | 0.659 | 0.947 | 0.915 | 0.614 | 0.994 | 0.750 | 0.988 | 0.867 | 0.543 | 0.998 | 0.864 | 0.989 | 0.773 | 0.906 |
Manu Goyal | DeeplabV3+ with Priority strategy based on no. of images in Dataset | 0.480 | 0.954 | 0.569 | 0.935 | 0.717 | 0.613 | 0.992 | 0.826 | 0.975 | 0.802 | 0.581 | 0.963 | 0.313 | 0.987 | 0.772 | 0.867 | 0.862 | 0.905 | 0.811 | 0.865 | 0.567 | 0.973 | 0.778 | 0.931 | 0.770 | 0.841 | 0.971 | 0.462 | 0.995 | 0.906 | 0.886 | 0.946 | 0.282 | 0.997 | 0.916 | 0.821 |
Task 3 — Test-Set — Preliminary Secondary Metrics (2/2)
team_name | approach_name | MEL_Sens | MEL_Spec | MEL_PPV | MEL_NPV | MEL_AUC | BCC_Sens | BCC_Spec | BCC_PPV | BCC_NPV | BCC_AUC | AKIEC_Sens | AKIEC_Spec | AKIEC_PPV | AKIEC_NPV | AKIEC_AUC | NV_Sens | NV_Spec | NV_PPV | NV_NPV | NV_AUC | BKL_Sens | BKL_Spec | BKL_PPV | BKL_NPV | BKL_AUC | DF_Sens | DF_Spec | DF_PPV | DF_NPV | DF_AUC | VASC_Sens | VASC_Spec | VASC_PPV | VASC_NPV | VASC_AUC | avgAUC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BIL, NTU | Conv. Ensemble (Inception Models Normalized) + avg. pooling | 0.561 | 0.977 | 0.756 | 0.946 | 0.930 | 0.645 | 0.994 | 0.870 | 0.977 | 0.987 | 0.558 | 0.995 | 0.750 | 0.987 | 0.987 | 0.969 | 0.791 | 0.875 | 0.945 | 0.969 | 0.747 | 0.956 | 0.740 | 0.957 | 0.963 | 0.545 | 0.998 | 0.889 | 0.987 | 0.967 | 0.800 | 0.998 | 0.903 | 0.995 | 0.988 | 0.970 |
BioImaging-KHU | Deep Learning with Adapted InceptionV3 | 0.673 | 0.935 | 0.569 | 0.957 | 0.917 | 0.645 | 0.989 | 0.800 | 0.977 | 0.981 | 0.558 | 0.989 | 0.600 | 0.987 | 0.962 | 0.903 | 0.849 | 0.900 | 0.853 | 0.947 | 0.728 | 0.952 | 0.718 | 0.954 | 0.932 | 0.659 | 0.995 | 0.784 | 0.990 | 0.939 | 0.657 | 0.998 | 0.885 | 0.992 | 0.981 | 0.951 |
UNIST_BMIPL | Multiscale Lesion Segmentation and Application to Skin Cancer Classification | 0.807 | 0.825 | 0.371 | 0.971 | 0.897 | 0.613 | 0.982 | 0.695 | 0.975 | 0.971 | 0.674 | 0.985 | 0.569 | 0.990 | 0.969 | 0.761 | 0.887 | 0.910 | 0.711 | 0.894 | 0.419 | 0.974 | 0.734 | 0.909 | 0.889 | 0.705 | 0.993 | 0.738 | 0.991 | 0.975 | 0.829 | 0.965 | 0.358 | 0.996 | 0.974 | 0.938 |
Dysion AI Technology Co., Ltd | Deep Model Ensemble without Data Alignment v2 | 0.398 | 0.961 | 0.567 | 0.926 | 0.890 | 0.839 | 0.951 | 0.531 | 0.989 | 0.984 | 0.605 | 0.986 | 0.565 | 0.988 | 0.978 | 0.916 | 0.814 | 0.881 | 0.866 | 0.952 | 0.636 | 0.966 | 0.758 | 0.941 | 0.927 | 0.636 | 0.993 | 0.737 | 0.989 | 0.961 | 0.771 | 0.995 | 0.794 | 0.995 | 0.994 | 0.955 |
Manu Goyal | DeeplabV3+ with strategy based on maximum no. of pixel per class | 0.608 | 0.921 | 0.495 | 0.949 | 0.765 | 0.731 | 0.984 | 0.756 | 0.982 | 0.858 | 0.512 | 0.978 | 0.400 | 0.986 | 0.745 | 0.870 | 0.856 | 0.901 | 0.814 | 0.863 | 0.512 | 0.987 | 0.867 | 0.923 | 0.749 | 0.795 | 0.973 | 0.473 | 0.994 | 0.884 | 0.771 | 0.966 | 0.351 | 0.994 | 0.869 | 0.819 |
Mammoth | Lu Zhu | 0.684 | 0.933 | 0.565 | 0.959 | 0.907 | 0.699 | 0.969 | 0.596 | 0.980 | 0.958 | 0.698 | 0.984 | 0.556 | 0.991 | 0.958 | 0.880 | 0.894 | 0.926 | 0.832 | 0.948 | 0.687 | 0.944 | 0.671 | 0.947 | 0.910 | 0.636 | 0.995 | 0.800 | 0.989 | 0.863 | 0.514 | 0.998 | 0.857 | 0.989 | 0.827 | 0.910 |
Nitwit AI | Inception V3 | 0.632 | 0.962 | 0.679 | 0.953 | 0.797 | 0.774 | 0.980 | 0.713 | 0.985 | 0.877 | 0.581 | 0.986 | 0.543 | 0.988 | 0.784 | 0.954 | 0.798 | 0.877 | 0.920 | 0.876 | 0.631 | 0.981 | 0.846 | 0.941 | 0.806 | 0.682 | 0.999 | 0.937 | 0.991 | 0.840 | 0.543 | 0.997 | 0.826 | 0.989 | 0.770 | 0.821 |
The Homeboy’s | Fusion of classical and DL technique | 0.655 | 0.904 | 0.465 | 0.954 | 0.892 | 0.677 | 0.972 | 0.618 | 0.979 | 0.956 | 0.488 | 0.986 | 0.500 | 0.985 | 0.962 | 0.824 | 0.887 | 0.917 | 0.770 | 0.936 | 0.696 | 0.936 | 0.645 | 0.948 | 0.917 | 0.705 | 0.994 | 0.775 | 0.991 | 0.973 | 0.743 | 0.993 | 0.722 | 0.994 | 0.995 | 0.947 |
Tencent Youtu Lab | ResNet based skin lesion diagnosis with triplet loss and feature similarity | 0.608 | 0.961 | 0.667 | 0.951 | 0.930 | 0.753 | 0.987 | 0.795 | 0.984 | 0.967 | 0.488 | 0.992 | 0.636 | 0.985 | 0.943 | 0.946 | 0.826 | 0.891 | 0.910 | 0.962 | 0.724 | 0.958 | 0.744 | 0.954 | 0.939 | 0.636 | 0.996 | 0.824 | 0.989 | 0.970 | 0.629 | 0.998 | 0.880 | 0.991 | 0.967 | 0.954 |
Persistent Systems | Two-stage hierarchical classifier | 0.509 | 0.952 | 0.576 | 0.938 | 0.763 | 0.667 | 0.970 | 0.590 | 0.978 | 0.930 | 0.744 | 0.960 | 0.356 | 0.992 | 0.951 | 0.869 | 0.834 | 0.888 | 0.809 | 0.895 | 0.581 | 0.961 | 0.712 | 0.932 | 0.858 | 0.705 | 0.982 | 0.534 | 0.991 | 0.917 | 0.686 | 0.988 | 0.585 | 0.993 | 0.902 | 0.888 |
DC | resnet ensemble | 0.737 | 0.940 | 0.612 | 0.966 | 0.937 | 0.570 | 0.991 | 0.803 | 0.972 | 0.965 | 0.442 | 0.997 | 0.792 | 0.984 | 0.961 | 0.911 | 0.887 | 0.924 | 0.869 | 0.966 | 0.843 | 0.936 | 0.688 | 0.973 | 0.964 | 0.682 | 0.997 | 0.882 | 0.991 | 0.968 | 0.571 | 1.000 | 1.000 | 0.990 | 0.984 | 0.964 |
QuindiTech: Yuchen Lu | resnet + label_smooth + balance | 0.596 | 0.959 | 0.650 | 0.949 | 0.884 | 0.753 | 0.985 | 0.769 | 0.984 | 0.981 | 0.628 | 0.988 | 0.600 | 0.989 | 0.936 | 0.945 | 0.791 | 0.872 | 0.905 | 0.933 | 0.682 | 0.972 | 0.804 | 0.948 | 0.926 | 0.591 | 0.998 | 0.897 | 0.988 | 0.927 | 0.543 | 0.999 | 0.905 | 0.989 | 0.976 | 0.938 |
CNB-CSIC & FTN-UNS | Ensemble of transfer learning on VGG16 and GoogLeNet | 0.602 | 0.955 | 0.632 | 0.950 | 0.902 | 0.774 | 0.980 | 0.720 | 0.985 | 0.972 | 0.512 | 0.980 | 0.423 | 0.986 | 0.932 | 0.922 | 0.806 | 0.877 | 0.873 | 0.943 | 0.636 | 0.966 | 0.758 | 0.941 | 0.920 | 0.682 | 0.997 | 0.882 | 0.991 | 0.920 | 0.629 | 0.997 | 0.846 | 0.991 | 0.989 | 0.940 |
Università degli Studi di Modena e Reggio Emilia (AImage Lab .zip) | inception fine-tuned, weighted loss and data augmentation | 0.544 | 0.953 | 0.596 | 0.942 | 0.748 | 0.731 | 0.982 | 0.723 | 0.982 | 0.856 | 0.721 | 0.984 | 0.564 | 0.992 | 0.852 | 0.934 | 0.789 | 0.870 | 0.888 | 0.862 | 0.664 | 0.974 | 0.809 | 0.945 | 0.819 | 0.568 | 0.997 | 0.862 | 0.987 | 0.783 | 0.571 | 0.997 | 0.833 | 0.990 | 0.784 | 0.815 |
Tandon Titans | ResNet-50-without-hair-removal | 0.561 | 0.954 | 0.611 | 0.945 | 0.929 | 0.710 | 0.989 | 0.805 | 0.981 | 0.984 | 0.605 | 0.990 | 0.650 | 0.988 | 0.965 | 0.950 | 0.776 | 0.865 | 0.912 | 0.964 | 0.682 | 0.973 | 0.809 | 0.948 | 0.947 | 0.614 | 0.999 | 0.964 | 0.989 | 0.983 | 0.600 | 0.999 | 0.913 | 0.991 | 0.986 | 0.965 |
The Homeboy’s | Pyramidal DL | 0.643 | 0.903 | 0.458 | 0.952 | 0.906 | 0.731 | 0.965 | 0.581 | 0.982 | 0.966 | 0.512 | 0.988 | 0.564 | 0.986 | 0.964 | 0.809 | 0.902 | 0.926 | 0.759 | 0.936 | 0.700 | 0.917 | 0.587 | 0.948 | 0.913 | 0.614 | 0.997 | 0.844 | 0.989 | 0.973 | 0.686 | 0.996 | 0.800 | 0.993 | 0.996 | 0.951 |
WVUmich | resenet without augmentation fusion epochs | 0.456 | 0.972 | 0.672 | 0.933 | 0.892 | 0.710 | 0.987 | 0.776 | 0.981 | 0.981 | 0.581 | 0.980 | 0.455 | 0.988 | 0.943 | 0.946 | 0.760 | 0.856 | 0.903 | 0.945 | 0.599 | 0.960 | 0.714 | 0.935 | 0.916 | 0.614 | 0.995 | 0.794 | 0.988 | 0.925 | 0.771 | 0.995 | 0.771 | 0.995 | 0.990 | 0.942 |
WVUmich | Fusion resenet models | 0.526 | 0.964 | 0.652 | 0.941 | 0.901 | 0.753 | 0.987 | 0.795 | 0.984 | 0.987 | 0.535 | 0.986 | 0.535 | 0.986 | 0.969 | 0.954 | 0.748 | 0.851 | 0.915 | 0.950 | 0.631 | 0.975 | 0.811 | 0.940 | 0.937 | 0.523 | 0.998 | 0.885 | 0.986 | 0.955 | 0.743 | 0.998 | 0.897 | 0.994 | 0.993 | 0.956 |
Computer Vision Lab, Nankai University | CNN ensemble | 0.602 | 0.970 | 0.720 | 0.950 | 0.786 | 0.817 | 0.975 | 0.685 | 0.988 | 0.896 | 0.488 | 0.990 | 0.583 | 0.985 | 0.739 | 0.954 | 0.794 | 0.875 | 0.919 | 0.874 | 0.645 | 0.967 | 0.765 | 0.942 | 0.806 | 0.545 | 0.999 | 0.960 | 0.987 | 0.772 | 0.600 | 0.999 | 0.913 | 0.991 | 0.799 | 0.810 |
Department of Dermatology, University of Rzeszów, Poland | ResNet101-Adam | 0.649 | 0.936 | 0.563 | 0.954 | 0.913 | 0.731 | 0.971 | 0.624 | 0.982 | 0.974 | 0.535 | 0.986 | 0.535 | 0.986 | 0.957 | 0.883 | 0.804 | 0.872 | 0.821 | 0.927 | 0.525 | 0.960 | 0.687 | 0.923 | 0.895 | 0.523 | 0.995 | 0.742 | 0.986 | 0.939 | 0.771 | 0.988 | 0.600 | 0.995 | 0.963 | 0.938 |
Stony Brook University | Transfer Learning 2 (0.9) | 0.614 | 0.925 | 0.512 | 0.949 | 0.770 | 0.763 | 0.954 | 0.522 | 0.984 | 0.859 | 0.744 | 0.956 | 0.333 | 0.992 | 0.850 | 0.783 | 0.939 | 0.951 | 0.742 | 0.861 | 0.645 | 0.910 | 0.547 | 0.939 | 0.778 | 0.455 | 0.990 | 0.571 | 0.984 | 0.722 | 0.600 | 0.991 | 0.600 | 0.991 | 0.795 | 0.805 |
ISI_NLP_LAB | Ensembel of ResNet50, DenseNet121 and MobileNet | 0.608 | 0.970 | 0.722 | 0.951 | 0.789 | 0.645 | 0.983 | 0.714 | 0.977 | 0.814 | 0.674 | 0.987 | 0.604 | 0.990 | 0.831 | 0.957 | 0.765 | 0.860 | 0.922 | 0.861 | 0.645 | 0.974 | 0.805 | 0.942 | 0.809 | 0.500 | 0.997 | 0.815 | 0.985 | 0.748 | 0.571 | 0.998 | 0.870 | 0.990 | 0.785 | 0.805 |
ISI_NLP_LAB | Ensemble of ResNet50, DenseNet121, MobileNet | 0.608 | 0.970 | 0.722 | 0.951 | 0.789 | 0.645 | 0.983 | 0.714 | 0.977 | 0.814 | 0.674 | 0.987 | 0.604 | 0.990 | 0.831 | 0.957 | 0.765 | 0.860 | 0.922 | 0.861 | 0.645 | 0.974 | 0.805 | 0.942 | 0.809 | 0.500 | 0.997 | 0.815 | 0.985 | 0.748 | 0.571 | 0.998 | 0.870 | 0.990 | 0.785 | 0.805 |
Persistent Systems | Five-stage hierarchical classifier | 0.474 | 0.952 | 0.559 | 0.934 | 0.717 | 0.699 | 0.961 | 0.537 | 0.980 | 0.835 | 0.628 | 0.964 | 0.337 | 0.989 | 0.800 | 0.869 | 0.834 | 0.888 | 0.809 | 0.895 | 0.576 | 0.951 | 0.665 | 0.930 | 0.772 | 0.727 | 0.988 | 0.640 | 0.992 | 0.856 | 0.629 | 0.989 | 0.579 | 0.991 | 0.834 | 0.816 |
AI Toulouse | Classification by ZNet, using only official data for training | 0.713 | 0.890 | 0.454 | 0.961 | 0.860 | 0.763 | 0.972 | 0.645 | 0.984 | 0.919 | 0.488 | 0.984 | 0.467 | 0.985 | 0.811 | 0.840 | 0.869 | 0.906 | 0.783 | 0.904 | 0.590 | 0.952 | 0.674 | 0.933 | 0.841 | 0.545 | 0.997 | 0.857 | 0.987 | 0.861 | 0.657 | 0.997 | 0.852 | 0.992 | 0.884 | 0.869 |
Stony Brook University | Transfer Learning Ensemble 3 | 0.614 | 0.925 | 0.512 | 0.949 | 0.770 | 0.753 | 0.955 | 0.522 | 0.983 | 0.854 | 0.744 | 0.955 | 0.327 | 0.992 | 0.850 | 0.783 | 0.939 | 0.951 | 0.742 | 0.861 | 0.645 | 0.910 | 0.547 | 0.939 | 0.778 | 0.455 | 0.990 | 0.571 | 0.984 | 0.722 | 0.600 | 0.991 | 0.600 | 0.991 | 0.795 | 0.804 |
SAIIP-MIA | A Multi-Level Deep Ensemble Model | 0.632 | 0.921 | 0.505 | 0.951 | 0.887 | 0.785 | 0.967 | 0.608 | 0.986 | 0.965 | 0.674 | 0.982 | 0.518 | 0.990 | 0.953 | 0.898 | 0.859 | 0.906 | 0.848 | 0.942 | 0.618 | 0.968 | 0.761 | 0.938 | 0.935 | 0.409 | 0.997 | 0.818 | 0.983 | 0.924 | 0.571 | 0.998 | 0.870 | 0.990 | 0.982 | 0.941 |
Stony Brook University | Transfer Learning Ensemble 1 | 0.579 | 0.941 | 0.556 | 0.946 | 0.760 | 0.753 | 0.958 | 0.538 | 0.983 | 0.855 | 0.744 | 0.958 | 0.344 | 0.992 | 0.851 | 0.846 | 0.910 | 0.934 | 0.797 | 0.878 | 0.636 | 0.934 | 0.619 | 0.939 | 0.785 | 0.455 | 0.991 | 0.606 | 0.984 | 0.723 | 0.571 | 0.992 | 0.625 | 0.990 | 0.782 | 0.805 |
University of Padua | Ensemble of different CNN topologies | 0.538 | 0.972 | 0.708 | 0.943 | 0.933 | 0.688 | 0.981 | 0.703 | 0.980 | 0.980 | 0.512 | 0.993 | 0.667 | 0.986 | 0.978 | 0.960 | 0.766 | 0.861 | 0.928 | 0.963 | 0.691 | 0.967 | 0.777 | 0.949 | 0.946 | 0.568 | 0.998 | 0.893 | 0.987 | 0.986 | 0.600 | 0.999 | 0.913 | 0.991 | 0.997 | 0.969 |
UnB | Task1 preprocessed K-fold Ensemble of Resnet50 | 0.561 | 0.955 | 0.615 | 0.945 | 0.903 | 0.634 | 0.978 | 0.656 | 0.976 | 0.960 | 0.581 | 0.986 | 0.556 | 0.988 | 0.979 | 0.923 | 0.784 | 0.866 | 0.871 | 0.941 | 0.622 | 0.955 | 0.699 | 0.938 | 0.926 | 0.568 | 0.995 | 0.781 | 0.987 | 0.966 | 0.657 | 0.997 | 0.852 | 0.992 | 0.990 | 0.952 |
LTS5 | Convolutional Neural Network, DermoNet segmentation, ResNet50 | 0.684 | 0.934 | 0.571 | 0.959 | 0.918 | 0.699 | 0.982 | 0.714 | 0.980 | 0.966 | 0.488 | 0.978 | 0.396 | 0.985 | 0.962 | 0.924 | 0.801 | 0.875 | 0.875 | 0.946 | 0.548 | 0.974 | 0.778 | 0.928 | 0.929 | 0.545 | 0.999 | 0.960 | 0.987 | 0.965 | 0.657 | 0.999 | 0.920 | 0.992 | 0.995 | 0.954 |
University of Padua | Ensemble of VGG16 CNN | 0.596 | 0.957 | 0.642 | 0.949 | 0.926 | 0.634 | 0.977 | 0.641 | 0.976 | 0.975 | 0.535 | 0.986 | 0.535 | 0.986 | 0.967 | 0.936 | 0.806 | 0.879 | 0.893 | 0.959 | 0.700 | 0.963 | 0.760 | 0.950 | 0.939 | 0.545 | 0.997 | 0.857 | 0.987 | 0.986 | 0.571 | 0.999 | 0.909 | 0.990 | 0.994 | 0.964 |
UnB | Task 1 preprocessed Resnet50 pretrained model - CropBest strategy | 0.532 | 0.954 | 0.595 | 0.941 | 0.900 | 0.624 | 0.975 | 0.624 | 0.975 | 0.957 | 0.581 | 0.986 | 0.543 | 0.988 | 0.977 | 0.920 | 0.793 | 0.870 | 0.868 | 0.939 | 0.631 | 0.951 | 0.685 | 0.939 | 0.926 | 0.591 | 0.995 | 0.765 | 0.988 | 0.966 | 0.629 | 0.998 | 0.880 | 0.991 | 0.987 | 0.950 |
CAMP TUM | Webly Supervised Learning for Skin Lesion Classification | 0.538 | 0.951 | 0.582 | 0.942 | 0.866 | 0.720 | 0.984 | 0.753 | 0.982 | 0.959 | 0.512 | 0.991 | 0.629 | 0.986 | 0.932 | 0.946 | 0.778 | 0.865 | 0.905 | 0.948 | 0.654 | 0.963 | 0.747 | 0.943 | 0.922 | 0.500 | 0.999 | 0.957 | 0.985 | 0.861 | 0.600 | 0.999 | 0.913 | 0.991 | 0.948 | 0.919 |
miltonbd | SENet-154 final valid 0.77 | 0.591 | 0.942 | 0.564 | 0.947 | 0.876 | 0.731 | 0.983 | 0.739 | 0.982 | 0.950 | 0.558 | 0.988 | 0.571 | 0.987 | 0.961 | 0.931 | 0.784 | 0.867 | 0.882 | 0.937 | 0.631 | 0.969 | 0.774 | 0.940 | 0.904 | 0.455 | 0.997 | 0.800 | 0.984 | 0.913 | 0.571 | 0.999 | 0.952 | 0.990 | 0.899 | 0.920 |
Nitwit AI | ResNet | 0.637 | 0.869 | 0.384 | 0.949 | 0.877 | 0.602 | 0.974 | 0.602 | 0.974 | 0.963 | 0.419 | 0.988 | 0.500 | 0.983 | 0.961 | 0.724 | 0.925 | 0.936 | 0.690 | 0.920 | 0.719 | 0.887 | 0.517 | 0.950 | 0.898 | 0.614 | 0.984 | 0.540 | 0.988 | 0.972 | 0.714 | 0.987 | 0.568 | 0.993 | 0.983 | 0.939 |
WVUmich | resenet using augmentation tuning block | 0.520 | 0.942 | 0.533 | 0.939 | 0.886 | 0.677 | 0.984 | 0.733 | 0.979 | 0.979 | 0.419 | 0.992 | 0.600 | 0.983 | 0.936 | 0.920 | 0.740 | 0.842 | 0.859 | 0.931 | 0.622 | 0.962 | 0.734 | 0.938 | 0.915 | 0.545 | 0.999 | 0.960 | 0.987 | 0.959 | 0.657 | 0.997 | 0.852 | 0.992 | 0.984 | 0.941 |
Mehdi&peyman | InceptionV3 with augmentation | 0.491 | 0.963 | 0.627 | 0.937 | 0.727 | 0.720 | 0.972 | 0.626 | 0.981 | 0.846 | 0.535 | 0.982 | 0.460 | 0.986 | 0.758 | 0.913 | 0.824 | 0.887 | 0.863 | 0.869 | 0.770 | 0.939 | 0.679 | 0.960 | 0.854 | 0.477 | 0.996 | 0.778 | 0.985 | 0.737 | 0.314 | 0.999 | 0.917 | 0.984 | 0.657 | 0.778 |
gchhor | Pre-trained Inception-v3 | 0.520 | 0.958 | 0.614 | 0.940 | 0.868 | 0.602 | 0.984 | 0.718 | 0.974 | 0.937 | 0.419 | 0.995 | 0.692 | 0.983 | 0.907 | 0.933 | 0.692 | 0.820 | 0.872 | 0.897 | 0.641 | 0.967 | 0.764 | 0.941 | 0.872 | 0.409 | 0.999 | 0.947 | 0.983 | 0.894 | 0.686 | 0.997 | 0.857 | 0.993 | 0.972 | 0.907 |
University of Dayton, Signal and Image Processing Lab | SVM classifier with hand-crafted features using segmentation | 0.673 | 0.867 | 0.392 | 0.954 | 0.884 | 0.559 | 0.968 | 0.536 | 0.971 | 0.936 | 0.558 | 0.966 | 0.324 | 0.987 | 0.918 | 0.750 | 0.900 | 0.919 | 0.705 | 0.916 | 0.535 | 0.906 | 0.489 | 0.921 | 0.864 | 0.477 | 0.984 | 0.477 | 0.984 | 0.941 | 0.486 | 0.995 | 0.680 | 0.988 | 0.952 | 0.916 |
kevint | Two-Step Training of Deep Residual Networks for Skin Lesion Diagnosis | 0.456 | 0.957 | 0.574 | 0.932 | 0.896 | 0.559 | 0.987 | 0.732 | 0.972 | 0.965 | 0.651 | 0.984 | 0.538 | 0.990 | 0.947 | 0.961 | 0.677 | 0.817 | 0.921 | 0.942 | 0.470 | 0.972 | 0.739 | 0.916 | 0.919 | 0.477 | 0.997 | 0.840 | 0.985 | 0.968 | 0.429 | 0.996 | 0.714 | 0.987 | 0.979 | 0.945 |
Andrey Sorokin | Hybrid Model of Lesion Boundary Detector and lesion Pixel-wise class detection | 0.743 | 0.854 | 0.394 | 0.963 | 0.800 | 0.462 | 0.984 | 0.662 | 0.965 | 0.723 | 0.372 | 0.988 | 0.485 | 0.982 | 0.680 | 0.854 | 0.819 | 0.877 | 0.788 | 0.836 | 0.539 | 0.969 | 0.745 | 0.926 | 0.754 | 0.432 | 0.995 | 0.704 | 0.983 | 0.713 | 0.571 | 0.998 | 0.870 | 0.990 | 0.785 | 0.756 |
kevint | One-Step Training of Deep Residual Networks for Skin Lesion Diagnosis | 0.368 | 0.984 | 0.750 | 0.924 | 0.887 | 0.677 | 0.958 | 0.516 | 0.978 | 0.967 | 0.628 | 0.984 | 0.540 | 0.989 | 0.954 | 0.967 | 0.638 | 0.801 | 0.928 | 0.938 | 0.461 | 0.979 | 0.787 | 0.915 | 0.915 | 0.250 | 0.997 | 0.733 | 0.978 | 0.932 | 0.400 | 0.998 | 0.824 | 0.986 | 0.966 | 0.937 |
Le-Health | Ensemble of Densenet | 0.673 | 0.817 | 0.319 | 0.951 | 0.859 | 0.280 | 0.983 | 0.520 | 0.954 | 0.877 | 0.372 | 0.986 | 0.432 | 0.982 | 0.819 | 0.650 | 0.924 | 0.928 | 0.637 | 0.904 | 0.618 | 0.835 | 0.386 | 0.929 | 0.806 | 0.409 | 0.994 | 0.667 | 0.982 | 0.857 | 0.686 | 0.980 | 0.444 | 0.992 | 0.944 | 0.867 |
Department of Dermatology, University of Rzeszów, Poland | TripletLoss-Margin | 0.415 | 0.973 | 0.664 | 0.929 | 0.885 | 0.484 | 0.970 | 0.517 | 0.966 | 0.944 | 0.558 | 0.972 | 0.369 | 0.987 | 0.965 | 0.946 | 0.756 | 0.854 | 0.903 | 0.938 | 0.548 | 0.935 | 0.586 | 0.925 | 0.886 | 0.205 | 0.995 | 0.529 | 0.977 | 0.897 | 0.457 | 0.993 | 0.615 | 0.987 | 0.934 | 0.921 |
Andreas Pirchner | Generative adversarial networks for skin lesion classification | 0.398 | 0.950 | 0.504 | 0.925 | 0.875 | 0.387 | 0.970 | 0.456 | 0.960 | 0.936 | 0.302 | 0.986 | 0.382 | 0.980 | 0.949 | 0.869 | 0.743 | 0.836 | 0.790 | 0.907 | 0.488 | 0.906 | 0.467 | 0.914 | 0.851 | 0.500 | 0.978 | 0.400 | 0.985 | 0.938 | 0.657 | 0.991 | 0.622 | 0.992 | 0.959 | 0.916 |
Team MLMI | Cascaded DenseNets for Multi-Class Skin Lesion Classification | 0.649 | 0.851 | 0.358 | 0.950 | 0.839 | 0.538 | 0.941 | 0.373 | 0.969 | 0.834 | 0.349 | 0.974 | 0.283 | 0.981 | 0.812 | 0.742 | 0.879 | 0.902 | 0.694 | 0.839 | 0.447 | 0.913 | 0.464 | 0.908 | 0.781 | 0.295 | 0.989 | 0.448 | 0.979 | 0.731 | 0.486 | 0.992 | 0.586 | 0.988 | 0.791 | 0.804 |
NTHU CVLab | Deep learning with ResNet-50 | 0.398 | 0.963 | 0.581 | 0.926 | 0.850 | 0.462 | 0.979 | 0.589 | 0.965 | 0.933 | 0.465 | 0.980 | 0.400 | 0.984 | 0.936 | 0.920 | 0.658 | 0.802 | 0.845 | 0.908 | 0.525 | 0.945 | 0.616 | 0.922 | 0.888 | 0.409 | 0.997 | 0.783 | 0.983 | 0.920 | 0.314 | 0.993 | 0.500 | 0.984 | 0.904 | 0.905 |
University of York | Multitask learning, single CNN for all three tasks, segmentation via FCN | 0.363 | 0.949 | 0.477 | 0.921 | 0.814 | 0.570 | 0.965 | 0.515 | 0.972 | 0.943 | 0.140 | 0.993 | 0.353 | 0.975 | 0.905 | 0.904 | 0.725 | 0.832 | 0.834 | 0.904 | 0.484 | 0.910 | 0.473 | 0.913 | 0.834 | 0.409 | 0.994 | 0.667 | 0.982 | 0.956 | 0.600 | 0.997 | 0.840 | 0.991 | 0.975 | 0.904 |
SSNMLRG | hierarchy_resnet | 0.474 | 0.939 | 0.497 | 0.933 | 0.706 | 0.462 | 0.966 | 0.473 | 0.965 | 0.714 | 0.395 | 0.978 | 0.340 | 0.982 | 0.686 | 0.888 | 0.728 | 0.831 | 0.811 | 0.808 | 0.438 | 0.928 | 0.505 | 0.908 | 0.683 | 0.159 | 0.988 | 0.292 | 0.975 | 0.574 | 0.571 | 0.997 | 0.800 | 0.990 | 0.784 | 0.708 |
QuindiTech: Pingao Wang | Ensemble of Transfer Learning with pre-trained model over collected ISIC Archive | 0.029 | 1.000 | 1.000 | 0.890 | 0.770 | 0.570 | 0.984 | 0.707 | 0.972 | 0.957 | 0.163 | 0.994 | 0.437 | 0.976 | 0.864 | 0.975 | 0.393 | 0.707 | 0.912 | 0.852 | 0.217 | 0.982 | 0.671 | 0.882 | 0.858 | 0.432 | 0.999 | 0.905 | 0.983 | 0.927 | 0.857 | 0.971 | 0.411 | 0.997 | 0.988 | 0.888 |
QuindiTech: Pingao Wang | Transfer Learning with ISIC2018 archive | 0.012 | 1.000 | 1.000 | 0.888 | 0.771 | 0.548 | 0.990 | 0.785 | 0.971 | 0.958 | 0.140 | 0.993 | 0.375 | 0.975 | 0.868 | 0.970 | 0.355 | 0.694 | 0.888 | 0.850 | 0.198 | 0.983 | 0.662 | 0.880 | 0.863 | 0.386 | 0.999 | 0.944 | 0.982 | 0.936 | 0.886 | 0.970 | 0.413 | 0.997 | 0.986 | 0.890 |
Balazs Harangi | SKIN LESION DETECTION BASED ON AN ENSEMBLE OF ONE VERSUS ALL TRAINED CNN | 0.480 | 0.919 | 0.429 | 0.933 | 0.744 | 0.484 | 0.965 | 0.479 | 0.966 | 0.923 | 0.326 | 0.984 | 0.368 | 0.980 | 0.924 | 0.893 | 0.756 | 0.847 | 0.825 | 0.902 | 0.484 | 0.923 | 0.512 | 0.914 | 0.854 | 0.091 | 0.997 | 0.444 | 0.973 | 0.921 | 0.371 | 0.998 | 0.812 | 0.985 | 0.962 | 0.890 |
Balazs Harangi | SKIN LESION DETECTION BASED ON AN ENSEMBLE OF ONE VERSUS ALL TRAINED CNNS | 0.480 | 0.916 | 0.423 | 0.932 | 0.744 | 0.484 | 0.965 | 0.479 | 0.966 | 0.923 | 0.326 | 0.984 | 0.368 | 0.980 | 0.924 | 0.892 | 0.760 | 0.848 | 0.824 | 0.898 | 0.484 | 0.923 | 0.512 | 0.914 | 0.854 | 0.091 | 0.997 | 0.444 | 0.973 | 0.921 | 0.371 | 0.998 | 0.812 | 0.985 | 0.962 | 0.890 |
LABCIN | Handcrafted features based on ABCD rule and ELM Hierarchical Classification | 0.632 | 0.834 | 0.326 | 0.947 | 0.733 | 0.398 | 0.944 | 0.319 | 0.960 | 0.671 | 0.395 | 0.960 | 0.227 | 0.982 | 0.678 | 0.652 | 0.909 | 0.915 | 0.634 | 0.780 | 0.548 | 0.876 | 0.425 | 0.920 | 0.712 | 0.205 | 0.984 | 0.273 | 0.976 | 0.594 | 0.286 | 0.987 | 0.345 | 0.983 | 0.636 | 0.686 |
University of Illinois Springfield | Multiple CNN model | 0.222 | 0.977 | 0.551 | 0.908 | 0.856 | 0.473 | 0.976 | 0.564 | 0.966 | 0.938 | 0.419 | 0.983 | 0.419 | 0.983 | 0.933 | 0.953 | 0.536 | 0.755 | 0.883 | 0.902 | 0.359 | 0.953 | 0.561 | 0.899 | 0.852 | 0.045 | 0.996 | 0.250 | 0.972 | 0.900 | 0.600 | 0.995 | 0.724 | 0.991 | 0.976 | 0.908 |
Altumview and UBC Joint Team | Automatic Skin Lesion Analysis using Sliced Dermoscopy Images and Deep Residual | 0.614 | 0.757 | 0.244 | 0.939 | 0.686 | 0.634 | 0.910 | 0.316 | 0.974 | 0.772 | 0.186 | 0.972 | 0.163 | 0.976 | 0.579 | 0.556 | 0.833 | 0.833 | 0.555 | 0.694 | 0.138 | 0.994 | 0.789 | 0.873 | 0.566 | 0.182 | 0.988 | 0.320 | 0.976 | 0.585 | 0.657 | 0.896 | 0.131 | 0.991 | 0.777 | 0.666 |
QuindiTech: Pingao Wang | Transfer Learning with ISIC Archive and data augmentation | 0.018 | 1.000 | 1.000 | 0.889 | 0.767 | 0.387 | 0.995 | 0.837 | 0.961 | 0.962 | 0.116 | 0.993 | 0.333 | 0.975 | 0.797 | 0.985 | 0.294 | 0.677 | 0.927 | 0.845 | 0.129 | 0.991 | 0.718 | 0.872 | 0.858 | 0.386 | 0.997 | 0.773 | 0.982 | 0.923 | 0.914 | 0.975 | 0.464 | 0.998 | 0.993 | 0.878 |
SSNMLRG | Hierarchy | 0.497 | 0.936 | 0.497 | 0.936 | 0.716 | 0.452 | 0.956 | 0.400 | 0.964 | 0.704 | 0.395 | 0.982 | 0.395 | 0.982 | 0.689 | 0.889 | 0.683 | 0.809 | 0.803 | 0.786 | 0.479 | 0.941 | 0.578 | 0.915 | 0.710 | 0.023 | 0.999 | 0.333 | 0.971 | 0.511 | 0.200 | 0.997 | 0.636 | 0.981 | 0.599 | 0.673 |
Deep-Class | CNNCBR | 0.591 | 0.813 | 0.288 | 0.940 | 0.702 | 0.484 | 0.950 | 0.388 | 0.966 | 0.717 | 0.326 | 0.881 | 0.074 | 0.978 | 0.604 | 0.532 | 0.919 | 0.908 | 0.566 | 0.725 | 0.346 | 0.900 | 0.366 | 0.891 | 0.623 | 0.273 | 0.957 | 0.160 | 0.978 | 0.615 | 0.343 | 0.978 | 0.273 | 0.984 | 0.661 | 0.664 |
SSNMLRG | hierarchy_transferlearning | 0.281 | 0.950 | 0.417 | 0.912 | 0.615 | 0.355 | 0.958 | 0.355 | 0.958 | 0.656 | 0.628 | 0.972 | 0.397 | 0.989 | 0.800 | 0.907 | 0.600 | 0.774 | 0.812 | 0.754 | 0.346 | 0.944 | 0.507 | 0.896 | 0.645 | 0.000 | 1.000 | NaN | 0.971 | 0.500 | 0.343 | 0.993 | 0.545 | 0.985 | 0.668 | 0.663 |
SSNMLRG | hierarchy_transferlearning | 0.281 | 0.950 | 0.417 | 0.912 | 0.615 | 0.355 | 0.958 | 0.355 | 0.958 | 0.656 | 0.628 | 0.972 | 0.397 | 0.989 | 0.800 | 0.907 | 0.600 | 0.774 | 0.812 | 0.754 | 0.346 | 0.944 | 0.507 | 0.896 | 0.645 | 0.000 | 1.000 | NaN | 0.971 | 0.500 | 0.343 | 0.993 | 0.545 | 0.985 | 0.668 | 0.663 |
Math & Stat Dept., UNC-Greensboro, USA and CSIE Dept., NTNU, Taiwan | Support vector machine with topological features from persistent homology III | 0.310 | 0.890 | 0.264 | 0.910 | 0.600 | 0.430 | 0.934 | 0.301 | 0.962 | 0.682 | 0.465 | 0.947 | 0.204 | 0.984 | 0.706 | 0.705 | 0.743 | 0.805 | 0.626 | 0.724 | 0.336 | 0.903 | 0.369 | 0.890 | 0.620 | 0.114 | 0.968 | 0.096 | 0.973 | 0.541 | 0.400 | 0.986 | 0.412 | 0.986 | 0.693 | 0.652 |
University of Texas Freshman Research Initiative | Deep Learning with augmentation, dropout, and svm | 0.561 | 0.825 | 0.290 | 0.936 | 0.805 | 0.312 | 0.964 | 0.362 | 0.955 | 0.888 | 0.209 | 0.990 | 0.375 | 0.977 | 0.905 | 0.749 | 0.801 | 0.850 | 0.679 | 0.860 | 0.406 | 0.877 | 0.356 | 0.898 | 0.786 | 0.114 | 0.995 | 0.385 | 0.974 | 0.873 | 0.343 | 0.997 | 0.750 | 0.985 | 0.923 | 0.863 |
Math & Stat Dept., UNC-Greensboro, USA and CSIE Dept., NTNU, Taiwan | Support vector machine with topological features from persistent homology II | 0.327 | 0.902 | 0.299 | 0.913 | 0.615 | 0.344 | 0.953 | 0.327 | 0.957 | 0.649 | 0.326 | 0.955 | 0.175 | 0.980 | 0.640 | 0.741 | 0.690 | 0.783 | 0.639 | 0.716 | 0.387 | 0.901 | 0.396 | 0.898 | 0.644 | 0.114 | 0.976 | 0.125 | 0.973 | 0.545 | 0.400 | 0.986 | 0.412 | 0.986 | 0.693 | 0.643 |
Math & Stat Dept., UNC-Greensboro, USA and CSIE Dept., NTNU, Taiwan | Support vector machine with topological features from persistent homology | 0.339 | 0.873 | 0.254 | 0.912 | 0.606 | 0.344 | 0.933 | 0.252 | 0.956 | 0.639 | 0.349 | 0.946 | 0.158 | 0.980 | 0.647 | 0.648 | 0.750 | 0.796 | 0.585 | 0.699 | 0.332 | 0.900 | 0.358 | 0.889 | 0.616 | 0.136 | 0.964 | 0.102 | 0.974 | 0.550 | 0.429 | 0.968 | 0.242 | 0.986 | 0.698 | 0.636 |
SSTL | Skin Disease Classification by Resnet50 | 0.140 | 0.983 | 0.511 | 0.900 | 0.773 | 0.527 | 0.942 | 0.374 | 0.968 | 0.864 | 0.163 | 0.997 | 0.583 | 0.976 | 0.859 | 0.499 | 0.706 | 0.719 | 0.484 | 0.665 | 0.452 | 0.814 | 0.289 | 0.898 | 0.742 | 0.000 | 1.000 | NaN | 0.971 | 0.672 | 0.743 | 0.779 | 0.074 | 0.992 | 0.868 | 0.777 |
Deep-Class | CNNCBR-2 | 0.468 | 0.807 | 0.236 | 0.922 | 0.620 | 0.419 | 0.951 | 0.358 | 0.961 | 0.858 | 0.209 | 0.955 | 0.120 | 0.976 | 0.700 | 0.612 | 0.849 | 0.859 | 0.593 | 0.827 | 0.442 | 0.850 | 0.331 | 0.901 | 0.720 | 0.091 | 0.980 | 0.121 | 0.973 | 0.524 | 0.257 | 0.994 | 0.500 | 0.983 | 0.834 | 0.726 |
Michigan | weighted super learner | 0.211 | 0.967 | 0.450 | 0.906 | 0.849 | 0.344 | 0.970 | 0.427 | 0.958 | 0.894 | 0.209 | 0.991 | 0.409 | 0.977 | 0.941 | 0.968 | 0.464 | 0.731 | 0.906 | 0.894 | 0.309 | 0.955 | 0.536 | 0.892 | 0.851 | 0.068 | 0.997 | 0.429 | 0.973 | 0.882 | 0.000 | 1.000 | NaN | 0.977 | 0.935 | 0.892 |
miltonbd | senet 154 | 0.023 | 0.991 | 0.250 | 0.888 | 0.508 | 0.000 | 0.988 | 0.000 | 0.938 | 0.603 | 0.023 | 0.992 | 0.077 | 0.972 | 0.674 | 0.969 | 0.035 | 0.602 | 0.429 | 0.544 | 0.000 | 0.998 | 0.000 | 0.856 | 0.629 | 0.000 | 1.000 | NaN | 0.971 | 0.470 | 0.000 | 1.000 | NaN | 0.977 | 0.579 | 0.573 |
UnB | Snapshot Ensemble of Resnet50 - SnapEsem stragegy | 0.012 | 0.966 | 0.043 | 0.885 | 0.622 | 0.151 | 0.836 | 0.057 | 0.938 | 0.576 | 0.023 | 0.975 | 0.026 | 0.971 | 0.681 | 0.009 | 0.879 | 0.099 | 0.371 | 0.761 | 0.065 | 0.893 | 0.092 | 0.851 | 0.523 | 0.159 | 0.376 | 0.008 | 0.937 | 0.758 | 0.543 | 0.997 | 0.826 | 0.989 | 0.987 | 0.701 |